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Abstract— This paper addresses the problem of using au-
tonomous robots to record events that obey narrative structure.
The work is motivated by a vision of robot teams that can,
for example, produce individualized highlight videos for each
runner in a large-scale road race such as a marathon. We
introduce a method for specifying the desired structure as a
function that describes how well the captured events can be used
to produce an output that meets the specification. This function
is specified in a compact, legible form similar to a weighted
finite automaton. Then we describe a planner that uses simple
predictions of future events to coordinate the robots’ efforts
to capture the most important events, as determined by the
specification. We describe an implementation of this approach,
and demonstrate its effectiveness in a simulated race scenario
both in simulation and in a hardware testbed.

I. INTRODUCTION

What if you asked your robot to tell a story? Generating
narratives that capture the salient structure of a series of
events is a common skill in the daily life of humans.
This paper begins to explore the question of how to direct
robots to achieve such things autonomously. Though robots
capture substantial quantities of video data, video captured
by robots has thus far largely lacked narrative structure. In
this work, we explore automatic video narrative generation
by a coordinated team of robots equipped with cameras.

Our interest in this sort of narrative capture by robot
teams is motivated by a number of potential applications.
For example, imagine tasking robot teams with capturing
and assembling video that responds to requests like these:

“Show a sequence of events that confirms that the
suspect is (not) guilty.”
“Show a sequence of events that summarize my grand-
father’s day, without compromising his privacy.”
“Show a sequence of events from this cricket match that
explains why my side lost.”
“Show a sequence of events that identify the cause of
the explosion.”

The common thread through each of these requests is that
they can be characterized as tasks in which robots should
capture video of certain types of events occurring within
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Fig. 1. System overview. Actors ( ) move through the environment,
experiencing events ( ). Some of these events are captured by
observers ( ), including (possibly heterogeneous) mobile robots and
static cameras.

a domain, experienced by one or more agents, based on a
specification of the desired narrative structure.

Though the technical approach we propose is suitable for
a variety of these kinds of narrative capture applications, this
paper aims for clarity by focusing on the example application
of generating individualized highlight videos for each human
runner in a long-distance road race, such as a marathon.
The race application is a useful reference point because it
encapsulates many of the most salient elements of the larger
problem in a tractable setting.

For a sense of the current state of the art, consider
the effort by race sponsor Adidas to provide such videos
for runners in the 2018 Boston Marathon, based on static
cameras placed in two locations (about 15 km from the
start, and at the finish line). The resulting films are short (46
seconds), and are composed mostly of stock footage superim-
posed with race statistics of the runner. Little individualized
footage is included, and the general structure of the highlight
videos remains the same for every participant. For example,
the highlight video for men’s winner Yuki Kawauchi1 is
little different than the video for any other runner,2 and in
particular omits Kawauchi’s dramatic overtaking of Geoffrey
Kirui late in the race. Other participants have anecdotally
reported seeing little or no footage of themselves at all
in their ‘personalized’ highlight videos. Thus, though there
is demonstrable interest in these kinds of videos, current
technology seems unable to deliver videos that can capture
the essential events to convey a desired narrative structure.

1www.heretocreatelegend.adidas.com/id/E8P2D9oQpl
2Seen, for example, by entering an arbitrary bib number at

http://www.heretocreatelegend.adidas.com.



Figure 1 is a system overview. We anticipate a number
of important obstacles to meeting the challenges underlying
this kind of system.
(1) Mobility: Statically-placed cameras, though undoubtedly

helpful, are insufficient to capture events that are dis-
tributed widely over space. Instead, we envision teams
of camera-equipped mobile robots that move through the
environment, intelligently capturing events of interest.

(2) Specification: It is not enough to merely capture indi-
vidual events that are noteworthy in isolation; we seek
sequences of events that, when experienced together as
a whole, tell a complete story. Thus, we develop an
approach that enables a precise specification of individual
events can be assembled into a complete narrative.

(3) Prediction and planning: To effectively position the
robots for event capture, the system must predict when
and where those events may occur in the future, and
allocate robots to positions where those robots are likely
to capture events that contribute to the overall narrative.

(4) Postproduction: After the video capture is complete,
the system must assemble the captured video into a
final product, selecting captured events into a coherent
narrative.

Though this paper will perhaps raise more questions than it
answers, it does make several specific contributions toward
addressing those challenges.
(1) We introduce the active narrative capture by robot teams

problem. Our formalization of the problem includes an
approach for story specification, along with a quantitative
objective function determining how well a set of captured
events can be used to generate a story for such a
specification.

(2) We show, via simulation, that even relatively straight-
forward approaches for event prediction and planning
for event capture can successfully capture events that
comprise a story matching such specifications. We also
demonstrate, in an experimental testbed using Anki
Overdrive robots, the feasibility of this approach in
physical systems.

II. RELATED WORK

Efforts to model narrative in formal terms date back at
least to Vladimir Propp, who endeavored in 1928 to catalog
and classify extant Russian fairy tales according to the types
and sequences of important events in those stories, providing
a ‘grammar’ of sorts for that genre of literature [1]–[3].
That work serves as inspiration for ours, particularly for our
proposed specification of the desired narrative structure.

Several other lines of prior work have tackled parts of the
problem of automated capture and construction of narrative
video. One related problem is that of video summarization,
in which the objective is to select the most important shots
or frames from an input video. A rich literature on video
summarization exists, which can generally be divided into
those that use hand-crafted criteria for the selection [4]–
[7], and those that utilize learned criteria [8], [9]. Specific

efforts for video summarization have been made, in the
context of sport highlight video, for example for baseball [10]
and cricket [11]. Of particular interest is that of Lu and
Grauman [12], which performs story-driven summarization
by selecting subshots based on the influence, measured by the
presence of certain visual objects, of each shot on subsequent
shots. In contrast to this prior work on video summarization,
our paper commands a spatially-distributed set of robots to
record video likely to include valuable events. The problems
differ, because our controller must direct robots on-the-fly
and therefore the system may fail to capture valuable events.

A related thread, considering the automatic generation
of highlight videos, is being pursued in the video game
industry [13]. In commercial practice, some video games
can generate highlight films after the conclusion of a play
session. However, the task in this context is even easier than
in video summarization, because the game software can track
all relevant events, and render the most impactful of them a
posteriori. Artificial environments can also construct virtual
cameras during post-processing to generate video that best
shows the selected event.

Another similar problem is the vacation snapshot problem,
in which a moving robot must capture a collection of k highly
diverse photographs along its journey, with the constraint
that the decision to keep or discard each incoming frame
must be made immediately. Girdhar and Dudek [14] showed
how to treat this problem as an instance of the k-centers
problem using an online algorithm to collect the k extremum
samples. More recently, a notion of curiosity was used to
expand this idea to active decision-making about how the
robot should move [15]. Rabinovich and Girdhar [16] applied
this algorithm to online generation of video spoilers of films
with modest success.

Yu and LaValle’s research on story validation can be
viewed as an inverse of the approach we propose here. That
work assumes a sparse network of sensors has captured a
sequence of events triggered by a mobile agent, and the
problem is to determine whether that sequence of events is
consistent with a hypothetical story, expressed as a sequence
of events purported to have occurred. Progress has been
made on this problem for both exact [17] and (more directly
relevant to the present work) approximate forms [18] of
matching. Several important differences exist between that
prior work and ours. Perhaps the most essential is that, in
Yu and LaValle, the sequence of captured events is treated
as a fixed input. In contrast, our problem considers how to
position the robots to capture events that correspond to given
input story specification. This same contrast distinguishes our
problem from work on Robocup commentary [19], [20], as
well as the vast and active community of researchers [21]–
[29] applying computational and classical planning tech-
niques to generate narratives and text to tell stories.

III. PROBLEM STATEMENT

This section introduces and formalizes our narrative cap-
ture problem. The central elements of the model are actors,
events, and observers.



A. Actors

A collection of actors A = a1, . . . , an move indepen-
dently through an environment, which we denote W . The
actors are the agents whose activities constitute the narratives
we want to capture.

Example 1: In the road race scenario introduced in the
introduction, each runner in the race is an actor. We might
model the race course, from start to finish, as a continuous
one-dimensional interval, so that the location of each actor
at any point is determined by the fraction of the race that
runner has completed.

Example 2: Another example scenario is a kindergarten
recital, in which a large number of five-year-olds perform
adorable music, but remain in essentially static positions.
In this case, each of the children is an actor, and the
environment might be modeled as a 2-dimensional region
defined by the shape of the stage.

Example 3: Suppose we want to monitor the activities of
pedestrians in a crowded marketplace. We would treat each
person in the scene as an actor. In this case, the pedestrians’
business may take them along various routes, and thus their
positions within the environment will be at least partially
unpredictable.

B. Events

The objective of our system is to capture (some of) the
activities of the actors. We abstract these activities as a se-
quence of discrete events. Each individual event is associated
with one or more actors, and occurs at some specific time
and location within W .

Example 4: Continuing from Example 1, events of inter-
est in the race scenario may include when each runner passes
key locations along the race course, such as the starting line,
landmarks (e.g. the Boston Marathon’s notorious Heartbreak
Hill), and the finish line. Events may also include interactions
with other runners such as when runner i overtakes runner
j. We assign both textual and graphical symbols to denote
each of these events:

• Starts(ai), shown graphically as .
• PassesLandmark(ai, lk), shown graphically as

lk
.

• Finishes(ai), shown graphically as .
• Overtakes(ai, aj), shown graphically as .
• WinsRace(ai), shown graphically as .
Example 5: Continuing from Example 2, in the

kindergarten recital scenario, we might consider
events that model important happenings within the
performance, both planned (SingsSolo(ai)) and
unplanned (MakesSillyFace(ai)).

Example 6: Continuing from Example 3, the events of
interest in the marketplace scenario might be visits to in-
dividual vendors (Visits(ai, vk)) and passing interactions
with other actors (SpeaksTo(ai, aj)).

Note that, although events occur at particular times and
places, and even though those details are quite important for
the observers (see below) to be in place to capture events, at
a fundamental level our model for events is symbolic, rather

than spatial. That is, we consider all events of the form, say
Overtakes(a1, a2), to be essentially equivalent, regardless
of when and where those events occur. The essential element
is the sequence of events, rather than where those events
occur in time and space.

C. Observers

To capture the events, a collection of robots R =
r1, . . . , rm, each bearing at least one camera, move au-
tonomously through an environment, either in a distributed
fashion or under the direction of a centralized controller.
We use the term ‘robot’ very broadly, to include stationary
cameras and cameras mounted upon pan-tilt platforms, along
with traditional wheeled or aerial robots.

At time t, each robot ri has a field of view F (ri, t) ⊂ W ,
indicating the portion of the environment visible to robot ri
at time t. If an event e occurs at time t, within F (ri, t), then
we say that ri has captured e.

Though the robots can move as time passes, their move-
ments will, in general, be constrained by velocity limits or by
the robots’ own kinematics. Such movement constraints are
well-studied for mobile robots, and the details are orthogonal
to our interests here. Thus, in this paper we abstract away
the physical details of robot motion, and consider only the
reachable sets, denoted R(ri, t1, t2) ⊆ W , and indicating
the set of possible states reachable by ri at time t2, starting
from its actual state at time t1.

D. Story Specifications

We can now finally turn our attention to the question of
how observed events combine to form narratives. For our
purposes, a story is a sequence of observed events, satisfying
some structure constraints. A vital preliminary question is to
determine how to specify these constraints. We propose, for
this paper, to do so by borrowing some ideas from the theory
of formal languages.

Specifically, we treat the space of possible events as an
alphabet and construct an automaton to describe the sort
of narratives that the system should endeavor to capture.
(Events either occur or do not, with their specific time of
occurrence being unimportant). But, given only some speci-
fication of the quintessential story, it remains quite possible
that the observers will be unable to capture any fitting story.
This could occur because certain important events occurred
outside the field of view of all of the observers, or simply
because those events did not, in fact, occur. Accordingly we
consider a specification as inducing a preference over stories,
i.e., across all finite sequences of events. Rather than the
strict in/out criterion usual in classical formal languages —
we thus employ a weighting to associate a scalar value
to sequences drawn from the alphabet. For simplicity we
confine our attention to ideas based on regular languages
as they are readily represented as finite automata. This also
makes it easy to add a scalar weighting, with a semantics that
is easily described in what follows (though, only informally).

We provide a finite set of states and also two distinguished
subsets: a non-empty set of starting states and another of



Fig. 2. Pictorial representa-
tion of a specification for an
interesting race where Alice
vies with Bob and/or Can-
dice, and is recorded passing
a landmark. Weights have
been omitted to minimize vi-
sual clutter: symbols all have
weight −1, except ε edges
are 0 and implicit self-loops
are 1. See video at [30].

terminating ones. States are connected with directed edges,
each bearing an event and a weight (from R). A sequence
of events is evaluated by tracing events in the natural way,
from some start state through the automaton, traversing
edge by edge, via edges carrying labels with matching
events. As the edges are traversed, the associated weights
are summed along the way. And, as in the conventional
arrangement, special edges marked with ε can be taken for
‘free’ without consuming an event. An important deviation
from the standard model is that, when tracing a sequence
and no outgoing edge is found to match, the automaton stays
in the same state (along with some fixed, constant weight).
These implicit self-loops improve clarity of the specification,
enabling one to focus mainly on describing events that are
part of an ideal story, and helps ensure that the process is
painless even if there are many different events. Note that
there may be multiple valid paths that can be traced on
the automaton (e.g., from several starting states, or multiple
matching edges, or different choices of where to take an
implicit self-loop). Here, the path with minimum weight is
considered. We term this quantity the total traversal weight.

Example 7: (Building on Examples 1 and 4.) This week-
end, Alice will be running a race with Bob and Candice, two
office frenemies. She’s not sure about the relative athleticism
of either of them, but she desires a good video nevertheless.
A specification for a highlight clip to give her good bragging
rights around the office water cooler might be the finite
automaton in Figure 2. The specification asks to see a duel
between Alice and either Bob or Candice, whomever is the
evenly athletic runner and hence her nemesis on the day.
Ideally, the video would include a scenic shot with Alice
running past a recognizable landmark: either cresting the
famous Heartbreak Hill, or Alice’s alma mater. This shot
might be before or after, or even between, the prolonged
duel that, though dramatic, ultimately has Alice victorious.

E. Orchestration and coordination of observers

Some subset of the observers may be capable of modifying
their recording activities on the basis of direction provided
to them. The idea is that, for example, information might

be provided to individual mobile cameras, giving them
instructions to attempt to record particular events.

The preceding are all the necessary elements to state the
narrative capture problem: Given a narrative specification
automaton L over an event space E, direct the observers
to capture a sequence of events e1 · · · ek that minimizes the
traversal weight of e1 · · · ek on L.

IV. APPROACH

We describe our current approach, which addresses the
basic narrative capture problem within the context of a
simulated race: it moves robotic cameras to capture events
that tell the stories of what happens to actors. We provide
some details of the system we have implemented, beginning
with an overview of the system architecture, then provide a
few details on the planning and coordination elements. Then
we present some demonstrative “video” clips.

A. Planning system overview

A schematic of the overall system architecture appears in
Fig. 3. The green block, the planner, is the core component,
being the locus of central decision-making. It examines an
aggregation of the events recorded thus far, determines which
feasible events would improve the current standing, and
communicates with one or more observers, each operating
in the environment, by sending them high-level commands.
To demonstrate coordinated event observation, we assume
that there are multiple observers. In our treatment, the ob-
servers are essentially robotic cameras, each being basically
autonomous: directives are sent to cameras, but are at a high-
level (“It appears that Overtakes(Bob, Jack) might occur
at mile marker 4 in 90 seconds time.”). The observers know
of their own details (constraints: field of view, motion limits;
state information: current position and velocity), and have a
local controller that attempts to capture the requested events.

The planner sends directives by combining three as-
pects:
(1) It examines an aggregation of the events that have

been recorded thus far, in the schematic these are the

...

...

commands

observations

(event, location, probability)

predictions
planner

observer observer observer

observed

events

event

predictor

story

specifications

optimization

metric

Fig. 3. System architecture. The planner, in green, processes observations
and predictions of future events to direct the observers where to go. The
desired story is achieved via an optimization process to maximize the match
to provided story specification (red block). The final video post production
is performed offline.



observed events, or, in cinematographer’s parlance, the
can. They are stored simply as a sequence, ordered
by time. (Only the symbol representing the successful
capture of the event being captured is needed, not the
observer’s specific observation.)

(2) The planner consults a set of story specifications (shown
in red), along with an optimization metric, provided at
the start. We permit multiple specifications because there
may be many stories (e.g., while Alice has an idea for a
highlight video, Bob and Candice could conceivably have
their own ideas as well). The optimization metric pro-
vides a way to prioritize efforts among the collection: is
the system aiming to generate the most compelling story,
a “Pulitzer-prize” type reward model (metric: max), or
to produce multiple good stories on average (ave), or
to maximize the number of narratives with scores above
a threshold, to maximize the number of vanity videos
produced (min)?

(3) The planner receives messages from a module called the
event predictor. The predictor uses the observed events
and a model of actor state, and space and time, to
forecast.

The planner uses these pieces of information to ask which
potential future sequence of events would improve the story
that can be constructed. It then determines which observers
should be instructed to attempt to collect these events, and
sends our those directives.

The final part, which we call post production, is not shown
in the schematic because it operates after all the events have
been captured. The specific events that comprise a story must
be stitched together to produce an output. At this point, other
additional stylistic aspects can come into play: if multiple
observers captured an event from different vantage points, the
best one should be selected; when two sequences are brought
together an appropriate transition must be made between
them, whether it be a dissolve, fade, or cut.

B. Planner: Some details

We elaborate further on some specific details of the
planner’s operation.

The planner takes the sequence of events that been
recorded thus far (or the empty sequence at the inception)
and traces them on the specification automata to compute
the total traversal weight. Next, it computes the marginal
improvement that would result if some of the events provided
by the event predictor, for a short duration in the future,
were captured. It calculates this by tracing these predicted
events forward from the state(s) reached by the already
recorded events. From the states reached by those events,
the least weight cost to some terminating state is found. The
weights in the future portion of the trace are multiplied by a
‘future’ discount factor (we use 0.5 in our implementation).
By comparing different possible sequences, we obtain an
estimate of how much the predicted events, if captured,
would contribute to a story when it is finally completed.
(For maximal simplicity, in our implementation, the planner

Fig. 4. Overhead view of simulated three lap race showing four runners,
and three cameras, only of two which are shown, re-position themselves
to capture the footage used to produce Figure 5. Greater (temporal) detail
is included for the overtaking events which shows how the predictors have
provided information used to assign cameras to those events and the cameras
move to capture that footage.

is greedy and so the evaluated sequences of predictions all
consist of only one prediction.)

We impose a threshold on the improvement values to
whittle down the list of predicted events to the subset that
are most valuable. For each of these, an estimate of the cost
of the cameras is estimated. For the mobile cameras, this is
expressed in terms of distance from the event; for immobile
ones, the cost is free for items already within view, and
infinite otherwise. Next an optimal assignment problem is
formed and solved using Munkres’s algorithm [31]. We have
found that it suffices to have the planner repeat this at each
time step, simply re-assigning cameras to event locations as
predictions change.

The predictor in our implementation keeps an estimated
position and velocity for each runner, and it uses this to
predict their positions at future points in time. It uses the
position and velocity of each runner from the last time
they were recorded as part of any event, smoothed with an
exponential moving average filter. The predictor can use this
to give estimates of when a given runner will finish the race
(based on knowledge of the position of the finish line), pass
a particular landmark, overtake or be overtaken by another.

C. Simulation

The system described was implemented in Python, along
with a simulation of a multi-lap race on a circular track.
Snapshots showing the overhead view of the simulation
appear in Figure 4. Those figures show a race with four
runners, being the scenario in Example 7, but with a fourth
runner unknown to the other three. In this scenario, there
are three cameras: a fixed camera at the starting line and
two moving cameras. Since the track is single dimensional,
each “camera” is a 1D vector representing the camera’s
limited field of view. Runners appear as pixels, colored
according to the runner. Landmarks appear as pixels of a
different color. A “video” is a 2D array with time as the



Starts(Alice)

PassesLandmark(Alice, Heartbreak)

Heartbreak

Overtakes(Alice, Bob)

Overtakes(Bob, Alice) Finishes(Alice)

Finishes(Bob)

Heartbreak

Fig. 5. Output “video” from a four-runner race using specification in
Figure 2. Legend: the vertical blue lines are where footage cuts away from
one camera to another; the orange lines show the landmark within the frame;
Alice is the red runner, Bob is the green one. See video at [30].

Starts(Alice)

PassesLandmark(Alice, Heartbreak)

Heartbreak

Finishes(Alice)

Finishes(Bob)

Heartbreak

Fig. 6. A second output from an identical race to Figure 5, but in this
case the system does not have precise pose estimates for the actors (e.g.,
from tracking chips within runners’ shoes); consequently their are too few
observations to make predictions of the overtaking events with any precision.

horizontal axis and individual camera frames as the vertical
axis. Using the specification in Figure 2 for Alice, we
produced two highlight videos for her. (We only considered
a single specification, so the choice of optimization metric
is irrelevant.) They are shown in Figures 5 and 6.

The first, Figure 5 captures the drama of Alice’s duel
with Bob, including her final victory. For cameras to capture
the vital overtaking events, the predictor needed to have
recent and fairly reliable information about the positions and
speeds of the runners. We achieve this by simulating a race
tracker, via devices such as the Arion running shoe (See
getarion.com), which was easily added by introducing
a different sort of observer. Without this detailed information,
overtaking predictions are scant and the system produces a
video like that in Figure 6. Though less involved, and with
a more limited dramatic arc, it is still clearly a customized
video that adheres to the structure specified in Figure 2.

D. Post production (rendering the video)

The output video is constructed by first identifying events
to include — which involves tracing the path that gives the
minimal total traversal weight for the events in the can.
Currently, the video is then composed by switching between
cameras at midpoints between events. If the video is too
long, we reduce the time before and after the selected events.
Though we do not yet do it, if the video were too short, we
could use slow motion instant replays to highlight key events.

V. HARDWARE PROOF OF CONCEPT

We conducted a basic proof-of-concept demonstration of
the techniques from Section IV. We held a race using four
Anki Overdrive robots on a race course loop. An overhead
camera operating at 30 FPS captured the entire race, and a
computer vision script detected the position of each racer

BA

A

B

A B

frame 234, 8.1s, 

frame 479, 16.5s, 

Fig. 7. (Right) Two frames from an overhead camera filming the robot
race. Frames are annotated with racer position and progress. Green outlines
show the three virtual cameras. Plot shows the progress of all racers and
the position of the virtual cameras as a function of time during the 13 laps.

(Alice, Bob, Candice, Dave) and computed their progress
during a 13-lap race. This information was used as GPS data
for the event predictor and planner. Our image processing
script also detected events.

The robot race course has a centerline distance of 3527
pixels (480.7 cm long). The race cars are each 8.2 cm long
and have a maximum speed of 4.2 cm/s (30.5 pixels/second).
Each race car was equipped with a colored fiducial to sim-
plify tracking based on color swatches. We emulate camera
movement by using a moving region-of-interest (ROI) to
represent each virtual camera. Our routine used three virtual
cameras, each with a ROI 200×200 pixels. The cameras had
a maximum speed that was 70% the speed of the fastest racer,
and were allowed to overlap and pass each other. Screenshots
and a summary of the race are in Fig. 7.

VI. CONCLUSION

This paper presented the new problem of online planning
for a set of cameras to gather sensor data to fit some
story structure. This narrative structure was induced via
an objective function specified as a weighted automaton.
We presented an example application in simulation and
hardware, and showed that though the precise story that can
be output depends on the information available to the planner,
the result still conforms to a reasonable structure as expressed
in the specification.

Designing a good specification can be challenging, how-
ever, and future work should provide tools for good story-
telling specifications. If [1] is correct, and there are a limited
set of legitimate narratives, this task may be simplified
substantially. Though we have provided a design capable of
producing multiple stories simultaneously, the preliminary
simulation in this work only demonstrated optimization of a
single narrative. Understanding how to simultaneously col-
lect footage for a variety of outcomes remains an interesting
question addressed only partially in [14], [32].
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